Lasr-Guided Variability Subtraction: The Linear Algorithm for Significance Reduction of Stellar Seismic Activity
Sarah Horvath, Sam Myers, John P. Ahlers, and Jason W. Barnes
University of Idaho - Department of Physics

Introduction
Stellar seismology produces variations in brightness that introduce oscillations into transit light curves, which can create challenges for traditional fitting models. These oscillations disrupt baseline stellar flux values and potentially mask transits. We develop a model that removes these oscillations from transit light curves by minimizing the significance of each oscillation in frequency space. By removing stellar variability, we prepare each light curve for traditional fitting techniques. We apply our model to δ-Scuti KOI-976 and demonstrate that our variability subtraction routine successfully allows for measuring bulk system characteristics using traditional light curve fitting. These results open a new window for characterizing planets orbiting seismically active early-type stars.

Method
Using Kepler photometry for KOI-976, we mask out transit events and create an out-of-transit flux baseline. Then, to remove the stellar oscillation frequencies we:

1. Create a periodogram of the out-of-transit photometry
2. Apply the Linear Algorithm for Significance Reduction (LASR) to constrain the frequency, amplitude, and phase for individual peaks, starting with the peaks of highest significance
 a. Given an initial value for frequency (found with accuracy from the periodogram) and reasonable guesses for amplitude and phase, LASR uses a downhill simplex routine to find the best values for reduction of the given peak in frequency space
 b. Given two frequencies that are either (i) close together in frequency space or (ii) integer multiples of one another, LASR reduces the pairs simultaneously to fit more accurately and account for close frequency pairs and resonant frequencies
3. Subtract the identified frequency(s) with given amplitude and phase from the current stellar baseline, to create an updated baseline with fewer oscillations
4. Repeat until all identifiable frequencies have been subtracted

We then add the transits back into the unreduced baseline and subtract all identified frequencies from the dataset. This process contrasts traditional prewhitening techniques because it operates in frequency space and removes frequencies one at a time. We then add the transits back into the unreduced baseline and subtract all identified frequencies from the dataset. This process contrasts traditional prewhitening techniques because it operates in frequency space and removes frequencies one at a time.

Results
KOI-976 Parameters
<table>
<thead>
<tr>
<th>Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_1) (μHz)</td>
<td>226.893 ± 1.1e-4</td>
</tr>
<tr>
<td>(\nu_2) (μHz)</td>
<td>248.864 ± 1.5e-5</td>
</tr>
<tr>
<td>(\nu_3) (μHz)</td>
<td>263.972 ± 4.8e-5</td>
</tr>
<tr>
<td>(C_{\text{red}})</td>
<td>0.17426 ± 3e-5</td>
</tr>
<tr>
<td>(D_1)</td>
<td>1.8203 ± 0.00012</td>
</tr>
<tr>
<td>(\nu \sin(i)) (km/s)</td>
<td>21.730 ± 7e-4</td>
</tr>
<tr>
<td>(\psi)</td>
<td>120 ± 5</td>
</tr>
<tr>
<td>(R_\star (R_\odot))</td>
<td>1.7 ± 0.3</td>
</tr>
<tr>
<td>(\psi)</td>
<td>25° ± 7°</td>
</tr>
</tbody>
</table>

Stellar parameters of KOI-976 identified using our LASR method. We identify a frequency triplet, labeled in the periodogram. We apply second-order rotational splitting theory,\(^7\)

\[\psi = \cos^{-1} \left(\frac{\nu \sin(i)}{2 \pi C_\nu} \right) \]

The frequencies of KOI-976’s dominant multiplet are labeled m = \{1, 0, 1\} in the periodogram [left]. We calculate the stellar rotation rate, \(\Omega_\star \), based on the frequencies of the identified multiplet mode, and the constants \(D_1 \) and \(C_{\text{red}} \). The second-order splitting constant and the Ledoux Constant \((D_1 \) and \(C_{\text{red}} \), respectively) are dependent on stellar properties\(^8\) and listed in the above table.

We compare \(\Omega_\star \) with the spectroscopically-detected projected rotation rate, \(\nu \sin(i) \), to determine the star’s axial tilt – stellar obliquity (\(\psi \)) – in the plane of the sky.

\[\psi = \cos^{-1} \left(\frac{\nu \sin(i)}{2 \pi C_\nu} \right) \]

We obtain \(\nu \sin(i) \) from Kepler’s Exoplanet Follow-up Observing Program\(^2\). We apply a numerical stellar radius \(R_\star \) using the stellar mass-radius relation, and test these values against a preliminary fit of the KOI-976’s grazing transit. Tighter constraints on \(R_\star \) and \(\psi \) is an ongoing effort.

Applications
Technical Applications:
- Minimize the effects of stellar variability on light curve data
- Widens scope of systems which can be analyzed in terms of stellar oscillation frequencies
- Provides a path for determining stellar properties utilizing asteroseismic theory

Scientific Applications:
- Constrain spin-orbit misalignment in early-type systems
- Provide a new means of studying bulk characteristics of early-type, high-mass systems
- Test planet formation and evolution theories in traditionally underanalyzed systems\(^5\)

References