Stem cells play an important role in regenerative medicine because of their ability to proliferate into various cell types. Current work focuses on murine mesenchymal stem cells (MSCs) differentiating into tenogenically differentiated cells upon exposure to a growth factor TGFβ2. During the course of their differentiation on treatment, MSCs are observed to exhibit different phenotypical and genotypical changes accounting for their change in electrophysiological make-up, i.e., the capacitance and permittivity of both the cell membrane and its interior. In this study, murine MSCs are characterized using dielectrophoresis (DEP), a non-labeling, non-destructive electrokinetic technique using a crossover frequency method. DEP is known to be able to detect subtle changes within the cell. Studies were performed on both untreated and treated (treated with growth factors differentiating into tenogenically modified MSCs) murine MSCs; the treated MSCs were treated on a time scale of days 1, 3, and 7. The results showed that tenogenically modified MSCs differed significantly in their electrical properties and could be distinguished from the untreated MSCs as early as 3 days into treatment.
The initial discovery We are investigating the potential of protein toxins naturally produced by Saccharomyces cerevisiae (Brewer’s/Baker’s yeast) to inhibit the growth of the human pathogen Candida glabrata. These toxin producers are known as killer yeasts to those who study them. We have tested over 15,0000 interactions between our killer yeasts and 130 isolates of …
By improving current bioremediation techniques for the removal of trichloroethylene from groundwater we can improve efficiency, improve safety, and treat spills closer to the source.
Tendons are collagen-rich musculoskeletal tissues that function to anchor muscle to bone, and transfer mechanical force between the two. Unfortunately, tendon injuries are common and tendons have poor self-healing capacity, resulting in long-term dysfunction. There are few treatment options, motivating the need for engineered tendon replacements and regenerative therapies using stem cells. However, there is …
Investigating whether or not timing a vaccination program can help protect wildlife and potentially facilitate pathogen elimination.