Student Projects

Using Exoplanets to Study Planet Formation

Observations of exoplanets, planets outside of our solar system, have exploded in the last 20 years, to the point where we know now of thousands of exoplanet systems. One of the great mysteries to come out of these discoveries has been the great diversity in types of planetary systems seen. Up until we started discovering …

Genomic Diversity and Evolution of Succinea Land Snails in the Galápagos Archipelago

The Galápagos Islands are home to many diverse species, but not all have diverged as extensively as Darwin’s finches. What could be preventing diversification in the Succinea land snails?

Developing microfluidic platform for electrokinetics characterization: C. Necator and Borrelia burgdorferi

Abstract:Cupriavidus necator, a Gram-negative soil bacterium, will be characterized using AC-based dielectrophoretic microwells. A crossover frequency will be found for the bacterium in buffer as well as the bacterium in different metal solutions and different concentrations. Once the crossover frequency has been observed and the process has been repeated to ensure repeatable values, the bacterium …

Exploring Electrical Properties of Mesenchymal Stem Cells via Dielectrophoresis

Stem cells play an important role in regenerative medicine because of their ability to proliferate into various cell types. Current work focuses on murine mesenchymal stem cells (MSCs) differentiating into tenogenically differentiated cells upon exposure to a growth factor TGFβ2. During the course of their differentiation on treatment, MSCs are observed to exhibit different phenotypical and genotypical changes accounting for their change in electrophysiological make-up, i.e., the capacitance and permittivity of both the cell membrane and its interior. In this study, murine MSCs are characterized using dielectrophoresis (DEP), a non-labeling, non-destructive electrokinetic technique using a crossover frequency method. DEP is known to be able to detect subtle changes within the cell. Studies were performed on both untreated and treated (treated with growth factors differentiating into tenogenically modified MSCs) murine MSCs; the treated MSCs were treated on a time scale of days 1, 3, and 7. The results showed that tenogenically modified MSCs differed significantly in their electrical properties and could be distinguished from the untreated MSCs as early as 3 days into treatment.

A novel approach to fight a drug resistant fungal pathogen

The initial discovery We are investigating the potential of protein toxins naturally produced by Saccharomyces cerevisiae (Brewer’s/Baker’s yeast) to inhibit the growth of the human pathogen Candida glabrata. These toxin producers are known as killer yeasts to those who study them. We have tested over 15,0000 interactions between our killer yeasts and 130 isolates of …

Microbial Viability Within Hydrogel Matrices

By improving current bioremediation techniques for the removal of trichloroethylene from groundwater we can improve efficiency, improve safety, and treat spills closer to the source.

Evaluating β-Catenin as a Potential Regulator of Tenogenic Stem Cell Differentiation

Tendons are collagen-rich musculoskeletal tissues that function to anchor muscle to bone, and transfer mechanical force between the two. Unfortunately, tendon injuries are common and tendons have poor self-healing capacity, resulting in long-term dysfunction. There are few treatment options, motivating the need for engineered tendon replacements and regenerative therapies using stem cells. However, there is …

When to vaccinate a fluctuating wildlife population: is timing everything?

Investigating whether or not timing a vaccination program can help protect wildlife and potentially facilitate pathogen elimination.

Phage Engineering to Understand Virus Host Range

Viruses are the most common entities on Earth, outnumbering bacteria by around an order of magnitude, and animals/plants by another order of magnitude. Viruses are also the least well understood group in terms of diversity, function, and evolution. The goal of my project is to explore how viruses can exploit new hosts. Extrapolating what we …